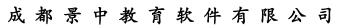

网络画板赛第92期打擂题分享

2018


模拟降雨随机数, 累加迭代统计数

作者: 边步兴

成都景中教育软件有限公司

2018/11/21

Chengdu Jingzhong Education Software Co., Ltd

网板周赛第 92 期:模拟降雨随机数,累加迭代统计数

【题目呈现】

问题:天气预报说,在今后的 3 天中,每一天下雨的概率均为 40%,这 3 天中恰有 2 天下雨的概率大概是多少?(高中人教 A 版必修 3P₁₃₂例 6)

解:由于一天下雨的概率为20%,用数字0~9中的1~2(整数)表示降雨,

ullet 825	527	642	410	471	022	895	395
804	219	469	337	764	$\overline{693}$	757	940
386	683	059	018	296	545	450	179
878	012	479	344	707	862	058	163
089	933	248	393	474	262	636	901
305	796	625	406	186	649	800	744
100	325						

3天中恰有2天下雨的概率大概是 $\frac{4}{50} = 0.08$

【扫码快阅】请利用手机微信扫描下面的二维码进行快速浏览作品.

【制作过程】

- 1、进入网络画板首页: http://www.netpad.net.cn, 单击【开始作图】按钮,进入作图页面;作图前的分析定位: (1)作成模板: 模拟试验的天数不受限制,恰好降雨的天数与模拟天数相关联,目的在于能更好的变式教学; (2)用了两次累加迭代计数,第一次累加迭迭代主要目的是统计所模拟 n 天当中的降雨天数,而第二次累加迭迭代的目的是统计所模拟 m 次中恰好有 k 天降雨的次数;
- 2、用变量尺工具作变量 t, m, n, d, k, s, a, lieshu, ①n 表示模拟试验的天数; ②用 k ($0 \le k \le n$) 表示 n 天中恰好降雨的天数; ③用 $1 \sim d$ 的整数表示降雨; ④未来 n 天中每天降雨的概率 $= d \times 10\%$; ⑤模拟试验的次数用 m 表示; ⑥用变量 lieshu 调节数阵的列数; ⑦ $a \times s$ 是累加变量;

Chengdu Jingzhong Education Software Co., Ltd

变量					×
变量	最小值	最大值	增量	当前值	
t	-1	10	▼ 1	5	×
m	1 •	50	▼ 1	5	×
n	1 -	30	▼ 1	5	×
d	1 -	9	▼ 1	5	×
k	0 -	n	▼ 1	5	×
		<u> </u>		(确定	置

变量					×
变量	最小值	最大值	增量	当前值	+
a	0	10	▼ 1	5	×
s	0 -	10	▼ 1	5	×
i	0	10	▼ 1	5	×
lieshu	1 .	10	▼ 1	5	×
	-	-	-	碰	旋

图 1: 变量尺对话框

3、不选任何元素的情况下点击测量工具,在弹出的对话框中输入 floor(t / lieshu)得到测量对象编号为 m0,用同样的办法(如下表所示)测量其他表达式,注意对象编号:

测量变量	测量对话框中输入的部分(或者操	测量对象的含义
的编号	作方法)	
m0	floor(t / lieshu)	控制迭代点行坐标
m1	t - m0 * lieshu	控制迭代点列坐标
m2	(n + 2) * m1 * 0.5	控制迭代点列所在位置
m3	t+1	点阵(随机数阵)换行累加迭代
m4	i+1	统计降雨天数时累加迭代
m5	if(n >= i, randomInt(0, 10) * 1 ^ m3,	产生 0~9 的随机数
	-1)	
m6	if(n >= i, 0.5 * i, 1000)	控制随机数的位置
m7	if(m5 >= 1 and m5 <= d, 1, 0)	根据随机数大小判断是否为降雨
m8	a + if(m7 == 1, 1, 0)	累加迭代所模拟 n 天当中的降雨天数

- 4、用坐标点工具作出点 $A_1(x_0,y_0)$ (设置 x 拖动变量 x0,和 y 拖动变量 y0)选中点 A_1 ,点击 平移工具,按向量(m_2 , $-m_0$)平移得到点 A_2 ,选中点 A_2 ,点击平移工具,按向量(m_0 6,0)平移得到点 A_3 5;
- 5、用坐标点工具作出点 $B_1(x1,y1)$ (设置 x 拖动变量 x1,和 y 拖动变量 y1)选中点 B_1 ,点击平移工具,按向量(1,0)平移得到点 B_2 ,按顺序选中点 B_1 、 B_2 点击射线工具作出射线 B_1B_2 ,用点工具在射线 B_1B_2 上取半自由点 M,选中点 M 在属性基础标签中修改点值为 m8;
- **第一次累加迭代计数:** (统计所模拟 n 天当中的降雨天数)

Chengdu Jingzhong Education Software Co., Ltd

6、按顺序选中变量 a、i,点击迭代工具,作 $a \rightarrow m8$ 、i $\rightarrow m4$ 的迭代,迭代深度为 n,注意设置参与迭代的象,迭代后的效果如下图所示:

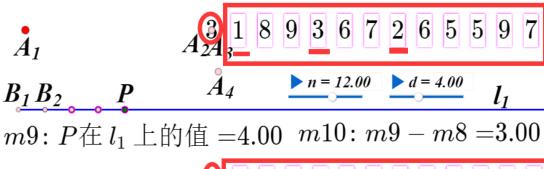
图 2: 第一次累加迭代编辑对话框

7、用点工具在迭代象上取点 P,选中迭代象上的点,在点值中修改为 n-1,选中迭代象上的点和射线 B_1B_2 ,点击测量工具,测得点 P 在射线上的点值 m9,点击测量工具在弹出的测量编辑对话框内输入 m9-m8,得到测量对象编号为 m10;用同样的办法(如下表所示)测量其他表达式,注意对象编号:

测量变量	测量对话框中输入的部分(或者操作方	测量对象的含义
的编号	法)	
m 9	选中迭代象上的点 P 和射线 B_1B_2 ,点击	统计所模拟 n 天当中的降雨天数
	测量工具,测出点 P 关于射线 B_1B_2 的点	(有误差和第一个随机数有关)
	值	
m10	m9-m8	修正统计所模拟 n 天当中的降雨天
		数
m11	if(shaixuan = $= 1$ and $t > -1$ and $m10 =$	判断在一次模拟的 n 天中降雨天数
	=k, 1, 0)	是否为 k 天
m12	s + if(m10 == k, 1, 0)	累加迭代所模拟 m 次中恰好有 k 天
		降雨的次数
	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·

8、选中点 A_1 ,点击平移工具,按向量(m6+0.25,-0.5)平移得到点 A_4 ,按顺序选中变量 i 和点 A_4 ,点击轨迹工具,轨迹范围: $0\sim n$,样本数设为 2,阈值为 100,选中轨迹,在属性 扩展标签中,光标停在显示栏中,用鼠标点击测量变量 m11(目的在于标识出 n 天中恰好 k 天降雨的情形),注意隐藏 A_2 、 A_3 、 A_4 点以及与 A_3 点合并的随机变量文本;

地址: 中国•成都市天府新区天府大道南段 2039 号海棠中心 1401 邮箱: scicp@163.com 电话: 028-85236538 网址: www.netpad.net.cn



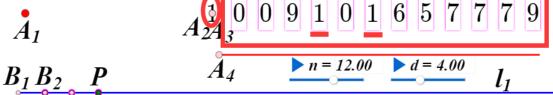

Chengdu Jingzhong Education Software Co., Ltd

图 3: 轨迹编辑对话框与属性对话框

m9: P在 l_1 上的值 =3.00 m10: m9 - m8 = 2.00

图 4: 第一次累加迭代以后效果图

说明: ①降雨的概率为 $d \times 10\%$ (40%),用数字 $1 \times 2 \times 3 \times 4$ 表示降雨,统计所模拟 $n \times (n = 12)$ 当中的降雨天数为 m10,降雨天数 k(k=2)则在下方标记一条横线;②方框内的数字是 迭代象,而最前面的数字是迭代初象,不是迭代象,统计降雨天数时只在迭代象内进行统计 **第二次累加迭代计数**: (统计所模拟 m 次中恰好有 k 天降雨的次数)

9、用坐标点工具作出点 $C_1(x2,y2)$ (设置 x 拖动变量 x2,和 y 拖动变量 y2)选中点 C_1 ,点击 平移工具,按向量(1,0)平移得到点 C_2 ,按顺序选中点 C_1 、 C_2 点击射线工具作出射线 C_1C_2 ,用点工具在射线 C_1C_2 上取半自由点 N,选中点 N 在属性基础标签中修改点值为 m12,10、按顺序选中变量 t、s,点击迭代工具,作 $t \rightarrow m3$ 、 $s \rightarrow m12$ 的迭代,迭代深度为 m,迭代

Chengdu Jingzhong Education Software Co., Ltd

后的效果如下图所示(最后要注意设置迭代变量 t, i 的初始值: t=-1, i=0):

图 5: 第二次累加迭代编辑对话框

11、用点工具在迭代象上取点,选中迭代象上的点,在点值中修改为 m*(n+1)-1,选中迭代象上的点 Q 和射线 C_1C_2 ,点击测量工具,测出点 Q 关于射线 C_1C_2 的点值 m13;可根据下表所示,测量其他表达式,注意对象编号:

でがない。以上人間でにより、正心内気があり・							
测量变量	测量对话框中输入的部分(或者操作方	测量对象的含义					
的编号	法)						
m13	选中迭代象上的点 Q 和射线 C_1C_2 , 点击	统计所模拟 m 次中恰好有 k 天降雨					
	测量工具,测出点 Q 关于射线 C_1C_2 的点	的次数(有误差和第一组随机数有					
	值	美)					
m14	m13-m12	修正所模拟 m 次中恰好有 k 天降雨					
		的次数					
m15	m14/m15	计算 m 次模拟当中恰好有 k 天降雨					
		的概率					

Chengdu Jingzhong Education Software Co., Ltd

解:由于一天下雨的概率为20%,用数字 $0\sim9$ 中的 $1\sim2$ (整数)表示降雨,

$A_{1}^{\bullet} \begin{array}{l} 677 \\ 457 \end{array}$	396	126	343	256	876	801	691
457	849	$\overline{926}$	616	051	083	112	558
870	603	060	299	435	887	596	999
578	966	281	242	125	154	359	093
114	816	$\overline{222}$	$\overline{091}$	$\overline{084}$	520	112	546
$\overline{694}$	322	934	091	710	998	492	786
87 <u>6</u>	$\frac{431}{431}$			I	6		10

 $\frac{1}{3}$ 天中恰有 $\frac{2}{50}$ 天下雨的概率大概是 $\frac{6}{50}=0.12$

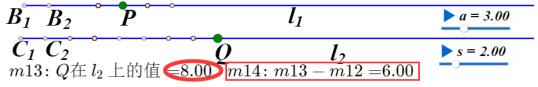
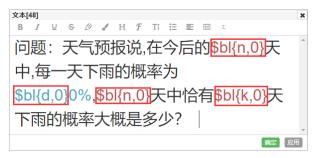



图 6: 第二次累加迭代以后效果图

12、自由文本中引用变量:点击自由文本,打开自由文本编辑对话框,输入题目中的文字信息后,光标停在需要引入变量的位置,用鼠标单击变量或测量变量则可在文本中引入变量,变量引用格式:

问题:天气预报说,在今后的3天中,每一天下雨的概率为20%,3天中恰有2天下雨的概率大概是多少?

图 7: 自由文本中引用变量

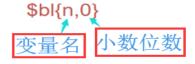


图 8: 变量引用格式

【经验分享】

1、为什么用坐标点工具设置拖动变量作点,而不直接作自由点?

答:通过坐标点工具设置拖动变量也可达到自由点拖动的效果,假若直接作自由点,拖动子对象时会影响到其他对象,而通过设置拖动变量时拖动子对象时不会影响到其他对象.

2、 标记作下划线为什么不用线段,而用轨迹代替,轨迹样本数为什么取 2?

答:下划线标记时用轨迹代替比直接作线段更省事更快捷,因为轨迹要参于二次迭代,所以轨迹的样本数越低,在二次迭代时效率越高,所以轨迹(下划线)的样本数设为2,阈值设为100.

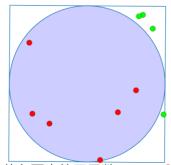
Chengdu Jingzhong Education Software Co., Ltd

3、迭代象上取点的点值设置如何设置,有什么技巧吗?

答:累加迭代统计次数时很关键的一步是在迭代象上取点,第一次在迭代象上取点(迭代深度为n),射线 B_1B_2 上的点P 迭代以后有n 个点,按 0、1、2、…、n-1 的顺序编号,所以第一次在迭代象上取点后点值设为n-1;而第二次在迭代象上取点(迭代深度为m),由于第一次迭代后的n 个点也要参与第二次迭代,再加上第二条射线 C_1C_2 的点Q 共有(n+1)个点参于第二次累加迭代,迭代后有m*(n+1)个点,按 0、1、2、…、m*(n+1)—1 的顺序编号,所以第二次在迭代象上取点后点值设为m*(n+1)—1.

4、为什么不直接用迭代象上点相对射线的点值作为统计数据,而要作一个修正呢?

答:有两个原因①迭代象上所取点相对于射线的点值会受到初象(随机值)的干扰,得到数据不精准,②修正后的数据有最大的好处是不受累加变量的初始值的影响.


5、为什么将迭代变量t的初始值设成-1?

答:将迭代变量 t的初始值设成一1,有两个原因:①由于变量 t 从 0 开始迭代的,为了使迭代象成一个整体,所以将迭代变量 t 的初始值设成一1;②修正后的变量累加迭代统计次数时本身只对迭代内部统计,不抱括迭代前的初始值.

6、在文本中引用变量即引入动态文本要注意什么?

答:①若是手动输入引用变量一定要切换到英文半角状态下在输入;②注意小数位数的设置. 【小试牛刀】

在如下图边长为 **2** 的正方形中随机撒一把豆子,用计算机随机模拟的方法估算圆周率的值(作迭代版的模拟投豆实验).

落在圆中的豆子数 $n_1=6$

落在正方形中的豆子数n=10